
 

Locating Sequence Blocks using Logical Match 
Sanil Shanker KP 

 Dept. of Computer Science , 
 Farook College, Kozhikode,India. 

 
Abstract-  In 2011, Sanil et al put forward the concept of 
Logical Matching Strategy. This technique helps to locate 
repeating blocks of sequential pattern of finite length. The 
paper explains the experimental verification of the logical 
match by using the data of various trinucleotide repeat 
diseases.   
 
Keywords- Logical Matching Strategy, Sequence Pattern, 
Trinucleotide Repeat, Tandem Repeat.  
 

I. INTRODUCTION 
Pattern matching in DNA sequence consisting of four 
characters A, C, G and T is one of the prominent 
applications of string matching [1].  A very important 
problem in computational biology is to locate the repeating 
blocks of sequences[2,3]. A tandem repeat in a genomic 
sequence is a string of nucleotides which is characterized 
by a certain motif (sequence pattern) followed by at least 
two copies of the motif[1,2]. Molecular biological 
investigations into trinucleotide repeats have revealed 
pathogenesis of various disease models in humans[5,6]. 
These diseases, including Friedrich's ataxia, Huntington's 
disease, Fragile X mental retardation and Kennedy’s 
disease are the result of a dramatic increase in the number 
of copies of a tri nucleotide pattern. This paper explains the 
way to locate the exact positions of the repeating sequence 
blocks in the text sequence of the trinucleotide repeat 
disease using the concept of logical match[4].  

 
II. LOGICAL MATCHING STRATEGY 

The Logical Matching Strategy is based on the concept of 
string matching. In this method, the characters in the 
sequence pattern are pre-processed to generate the indices. 
The information from pre- processing phase is used to 
match the indices of pattern with those of the text. The 
technique is explained in the following example with 
random data. 
Example  
In the simulation, the method is demonstrated with random 
data, where the text is known data, and the pattern is the 
data to be used as the search query. 
Text=> CGTACCTCGAATCGA 
Pattern => TCGAA    
n = 15, m = 5  
 
Pre-processing Phase: 
To generate indices of text, construct a table in which each 
column is used for storing different alphabets in the text. 
Shift the Text from right to left so that each alphabet 
coincides with its corresponding index in its respective 
column (Fig.1).  
From the Fig. 2, the indices of the Text can be arranged as, 
Indices of the Text => < A (4, 10, 11, 15);  
     G (2, 9, 14);  

     C (1, 5, 6, 8, 13);  
     T (3, 7, 12) > 
Similarly the indices of the Pattern can be generated by 
shifting the alphabet from right to left and can be stored in 
the respective columns in the table(Fig. 3). 
Fig.1 

                                                                                               
This way the indices corresponding to each alphabet in the 
mentioned texts are given in Fig. 2  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The indices of the Pattern obtained can be written as 
Indices of the Pattern=> <    A (4, 5);  
          G (3);  
          C (2);  
          T (1) >  

Fig. 2:  Input Text 
Indices of the input text A G C T 

15 A    
14  G   
13   C  
12    T 
11 A    
10 A    
9  G   
8   C  
7    T 
6   C  
5   C  
4 A    
3    T 
2  G   
1   C  

Sanil Shanker KP / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5426-5428

www.ijcsit.com 5426



 

 
 
 
 
 
 
 

 
 
Match the indices of Pattern with the indices of Text: 
Select the lowest index value alphabet in the Pattern and 
then the indices corresponding to the same alphabet in the 
Text have to arrange in a row.  That is, the lowest index 
value alphabet in the Pattern is T and the index value is 1.  
The indices of T in the Text obtained from Fig. 2 are 3,7,12.  
It can be written as, 
 
T: 3 7 12  
In the same way the next higher index value for the 
alphabet in the Pattern is 2 and the respective alphabet is C.  
The indices of C in the Text are, 
C: 1 5 6 8 13  
 
The next higher index value in the Pattern is 3 and the 
alphabet is G, the corresponding indices of the alphabet G 
in the Text are given by    
G: 2 9 14 
 
A is the next higher index value alphabet in the Pattern and 
the indices of A obtained from the Text are 
A: 4 10 11 15 
 
The highest index value 5 in the Pattern also corresponds to 
the alphabet A and the respective indices in the Text are  
A: 4 10 11 15 
 
Hence the matching indices of all the alphabets in the 
Pattern are given by, 

 
To locate the Pattern in the Text, consider the lowest index 
value of the alphabet T, that is 3, then check whether the 
next higher value of 3, that is 4, exists there among the 
indices of C or not.  If 4 is there in the indices of C, then check 
whether the next higher value 5 is there in the indices of G or 
not.  If 4 is not an index value of C, then take the next 
higher index value of T, 7 and check whether the next 
higher value 8 exists in C or not.  If exists then search for 
the next value 9 in the indices of G. If 9 exists among the 
indices of G, then proceed to the next alphabet A to locate 
the next higher index value 10.  If 10 is one of the indices 

for A then find whether 11 is included in the indices of the 
last alphabet A. In the same way, take the highest indices 
value of T, 12 and search for the next higher index value in 
C and so on. 
The location of the Pattern in the Text is the one in which 
all the alphabets satisfy the consecutive index values, that 
is, the location of the Pattern TCGAA in the Text 
CGTACCTCGAATCGA is given in Fig. 4, 

 
Fig. 4:  Location of the Pattern in the Text 

 
The Pattern TCGAA is located in the Text 
CGTACCTCGAATCGA in the locations 7 8 9 10 11. That 
is the Pattern occurs in the Text location 7. 

 
 

III. EXPERIMENTAL RESULT 
The experimental verification of the method, logical match 
was done by using the data from NCBI databank for the 
trinucleotide repeat diseases. For simulating the method, 
the program has been written in C language under Linux 
platform. The output of the simulation results for 
Friedreich’s ataxia, Huntington’s disease, Fragile XA 
syndrome and Kennedy’s disease are given in Table- 1. The 
locations of the pattern in the text for each disease are 
conveyed through the Figures 5- 8.  
 

IV  SUMMARY 
This method helps to find the exact locations of motif in 
trinucleotide repeat diseases. The experimental verification 
of the logical match was done by using the data of various 
trinucleotide repeat diseases such as Friedreich’s ataxia, 
Huntington’s disease, Fragile XA syndrome and Kennedy’s 
disease. This method finds application in sequence analysis 
in locating biologically meaningful segments.  
 
Table 1: Locations of tandem repeat for various.  
Diseases  Tandem repeat locations 

Friedreich’s ataxia 1976-1979, 2184-2208 
Huntington’s 
disease 

196-256, 968-971, 1126-1132, 1291-
1294 

Fragile XA 
syndrome 

13762-13765, 13786-13792, 13832-
13853 

Kennedy’s disease 1286-1349, 1370-1385, 1553-1556 

Fig. 3:  Input Pattern 
Indices of the Pattern A G C T 

5 A    
4 A    
3  G   
2   C  
1    T 

Sanil Shanker KP / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5426-5428

www.ijcsit.com 5427



 

 
Fig. 5: Friedreich’s ataxia  (Locus: AH003505S1, Region: 

1...2465 (2465  bp)) 

 

 
Fig.  6:  Huntington’s disease (Locus:  NM_002111, Region: 

1...1304 (1304  bp)) 
 

 
Fig. 7:  Fragile XA syndrome  (Locus:  HUMFMR1S, Region: 

1...13855(13855 bp)) 
 

 
Fig. 8:  Kennedy’s disease (Locus:  NM_000044, 

Region:1…1589 (1589 bp)) 

REFERENCES 
[1] Gusfield D, Algorithms on Strings, Trees and Sequences: Computer 

Science and Computational Biology, Cambridge University Press 
1997. 

[2] Pevzner P A, Computational Molecular Biology: An Algorithmic 
Approach, MIT Press , Cambridge, MA, 2000 

[3] Pevzner P A and Waterman M S, Open Combinatorial problems in 
computational molecular biology, Proc. Third Israel Symp. Theo. 
Comp. Syst. IEEE Computer Society Press, (1995) 158 – 173. 

[4] Sanil S K P, Elizabeth S and Austin J, A note on two applications of 
Logical Matching Strategy, Applied Artificial Intelligence, 25 (2011) 
708–720  

[5] Epplen J T and Gencik M, Trinucleotide Repeat Expansions: 
Mechanisms and Disease Associations, Nat. Ency. Hum. Gen., 
(2003) 634- 638. 

[6] Everett C M and Wood. N W, Trinucleotide repeats and 
neurodegenerative disease, Brain, 127 (2004) 2385- 2405.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sanil Shanker KP / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5426-5428

www.ijcsit.com 5428




